Answer:
SEE BELOW
Explanation:
INTERRIOR ANGLES
3.
∠A + ∠B + ∠C = 180
(180 - 103) + (3x - 14) + (3x + 9) = 180
6x = 180 - 77 + 14 - 9
x = 108 / 6
x = 18
m∠ACB = (3x - 14)
= 3(18) - 14
= 40
m∠ABC = (3x + 9)
= 3(18) + 9
= 63
-------------------------------
INTERRIOR ANGLES
4.
∠A + ∠B + ∠C = 180
(180 - 97) + (2x + 2) + (14x - 1) = 180
16x = 180 - 83 - 2 + 1
x = 96 / 16
x = 6
m∠BCA = 2x + 2
= 2(6) + 2
= 14
m∠ABC = 14x - 1
= 14(6) - 1
= 83
-------------------------------
EXTERIOR ANGLES
5.
∠B
180 - 15x + 20
15x = 180 + 20
x = 200/15
x = 13.33
∠C
180 - 9x + 10
9x = 190
x = 190/9
x = 21.11
∠E
180 - 17x + 2
17x = 182
x = 182/17
x = 10.706
m∠BEF = 17x + 2
= 17 (10.706) + 2
= 184
m∠ABC = 15x + 20
= 15(15.33) + 20
= 220
-------------------------------
EXTERIOR ANGLES
6.
first solve x by adding all the interior angles = 180
∠B + ∠E + ∠C = 180
2x + x + 93 = 180
3x = 180 - 93
x = 87/2
x = 43.5
m∠BEC = 360 - x
= 360 - 43.5
= 316.5
m∠ABC = 180 - 2x
= 180 - 2(43.5)
= 93