415,347 views
26 votes
26 votes
Please answer this question




Please answer this question ​-example-1
User Nikhil
by
2.3k points

2 Answers

24 votes
24 votes

Answer:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (1)/(x\ln 10) + (\cot x)/(\ln 10)}

Explanation:

Given:


\displaystyle \large{y=\log (x\sin x)}

Recall the (common) logarithmic differentiation & chain rules:


\displaystyle \large{(d)/(dx)[\log (u)] = (u')/(u\ln 10)}

Let
\displaystyle \large{u=x\sin x} then:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = ((x\sin x)')/(x\sin x \ln 10)}

Recall product rules:


\displaystyle \large{[f(x)g(x)]' = f'(x)g(x)+f(x)g'(x)}

Hence:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = ((x)'\sin x + x(\sin x)')/(x\sin x \ln 10)}\\\\\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (\sin x + x\cos x)/(x\sin x \ln 10)}\\\\\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (\sin x)/(x \sin x \ln 10) + (x \cos x)/(x\sin x \ln 10)}\\\\\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (1)/(x\ln 10) + (\cot x)/(\ln 10)}

From above, recall that:


\displaystyle \large{(d)/(dx)(\sin x) = \cos x}\\\\\displaystyle \large{(A\pm B)/(C) = (A)/(C) \pm (B)/(C)}\\\\\displaystyle \large{(\cos x)/(\sin x) =\cot x}

Hence, the answer is:


\displaystyle \large{(d)/(dx)[\log(x\sin x)] = (1)/(x\ln 10) + (\cot x)/(\ln 10)}

User Nuno Freitas
by
3.1k points
27 votes
27 votes

Answer:


(dy)/(dx)=\cot x+(1)/(x)

Explanation:


\boxed{\begin{minipage}{6 cm}\underline{Product\:Rule}\\\\$(d)/(dx)[f(x)g(x)]=f(x)g'(x)+f'(x)g(x)$\\\\\\\underline{Chain\:Rule}\\\\$(dy)/(dx)=(dy)/(du) * (du)/(dx)$\\\end{minipage}}


\textsf{Given}:y=\log (x \sin x)


\textsf{Let }u=x \sin x \implies y=\log(u)

Using the product rule, differentiate y with respect to
u:


\textsf{If }y=\log(u) \implies (dy)/(du)=(1)/(u)\implies (dy)/(du)=(1)/(x \sin x)

----------------------------------------------------------------------------------------

Differentiate
u=x \sin x with respect to x using the product rule:


\implies \textsf{Let }f(x)=x \implies f'(x)=1


\implies \textsf{Let }g(x)=\sin x \implies g'(x)=\cos x


\implies (du)/(dx)=x \cos x + \sin x

----------------------------------------------------------------------------------------

Use the chain rule to differentiate y with respect to x:


\implies (dy)/(dx)=(dy)/(du) * (du)/(dx)


\implies (dy)/(dx)=(1)/(x \sin x) * (x \cos x + \sin x)


\implies (dy)/(dx)=(x \cos x + \sin x)/(x \sin x)


\implies (dy)/(dx)=(x \cos x)/(x \sin x)+(\sin x)/(x \sin x)


\implies (dy)/(dx)=\cot x+(1)/(x)

User John Fu
by
3.2k points