Answer:
The exact rotation in revolutions per minute is 1.125 revolutions per minute
![\omega = 1.125 \ (Revolution)/(minute)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lwvvqm9jojp8fyduu76393ch4h0cwfkvc2.png)
Explanation:
The given angular velocity is expressed as follows;
![\omega = 135 \cdot \pi \ (rad)/(h)](https://img.qammunity.org/2021/formulas/mathematics/high-school/frf4z17b07usmw5fl0ivj3qrah9zbfxdhg.png)
Therefore, we have;
![\omega = (135 )/(60) \cdot \pi \ (rad)/(minute) = (9)/(4) \cdot \pi \ (rad)/(minute) = 2.25 \cdot \pi \ (rad)/(minute)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nt8k69oiecp7uatmn1vzs8omct2sn73v46.png)
One (1) revolution = 2·π radian
Therefore;
π radian = 1/2 revolution
2.25·π radian = 2.25 × 1/2 revolution = 1.125 revolution
Which gives;
![2.25 \cdot \pi \cdot (rad)/(minute) = 1.125 \ (Revolution)/(minute)](https://img.qammunity.org/2021/formulas/mathematics/high-school/43g0a1a0nl0rh75x3msb8f1iz88rxpl5f2.png)
The exact rotations in revolutions per minute is 1.125 revolutions per minute.