✭ Question -:
A rectangle has a length of (2x+1) units, a width of (x-7) units and an Area of 17 square units. Find the dimensions of the rectangle.
✭ Step-by-step explanation -:
In this question we are provided with the length of a rectangle (2x + 1) units and the width of the rectangle (x - 7). It is also given that the area is 17 units². We are asked to calculate the length and width of the rectangle.
First we will find the value of x
We know,
![\bull \: \small\boxed{ \rm{ Area_((rectangle)) = Length × Width}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xnwonj82zpo10dg39nvtyv7xsqzbtdvjm2.png)
Substituting the values we get
![\small\sf{ (2x + 1 ) (x - 7) = 17}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ermw81r403wacbo2425wg3z8e1jqwamkxh.png)
![\small\rm{ 2x( x - 7) + 1(x - 7) = 17}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yc1c4euq774t7pmfeexlxaulag8r35qc36.png)
![\small\rm{ 2 {x}^(2) - 14x + 1(x - 7) = 17}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oxffjs47d0yet1pb6s1f05a7qrvppbugvx.png)
![\small\rm{ 2 {x}^(2) - 13x - 7 = 17}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kom3ovr25ynbii70ymsowuawtgizv0iuqa.png)
![\small\rm{2 {x}^(2) - 13x - 7 - 17 = 0 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/lg37udlawcxphuumrdhwpifogc9i4ec16s.png)
![\small\rm{2 {x}^(2) - 13x - 24 = 0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ef6a6jzpkhzm2prcj3po7tl1l1kj807yyc.png)
![\small\rm{x = (13 + 19)/(2 * 2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/5gbz1gne6zawipmjya0fo10g0ji3su520f.png)
![\small\rm{ x = (32)/(4) = 8}](https://img.qammunity.org/2023/formulas/mathematics/high-school/izv61ssjmrzmdu7ys05y3f3xn5adazvhz4.png)
![\small\sf{x = 8}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4x1z89fmb0iyx6m44zee8ggr8fz5bmrzye.png)
Now we will substitute the value of x
Length = (2x + 1) = 2 × 8 + 1 = 16 + 1 = 17 units
Width = (x - 7) = 8 - 7 = 1 units
- Hence, the length of the rectangle is 17 units and the width is 1 units.