173k views
4 votes
How to do this question plz ​

How to do this question plz ​-example-1
User Borrrden
by
8.4k points

2 Answers

6 votes

Explanation:

Use law of cosine.

c² = a² + b² − 2ab cos C

17² = 20² + 22² − 2(20)(22) cos C

cos C = 595 / 880

C = 49.5°

User Sakthivel
by
8.2k points
4 votes

Answer:


these \: angles \: are \: \boxed{ \to} \\ \boxed{X = \:60.08 } \\ \\ \boxed{Y = \:72.45 }\\ \\ \boxed{Z =47.47}

Explanation:


....................................................... \\ well, \: there \: are \: no \: \: angles \: at \: all \to \\ but \: am \: going \: to \: sho w\: you \\how \: all \: these \: angles \: can \: be \: gotten. \\ ........................................................ \\ but \: to \: do\: this : \: we \: will \: apply \: the \\ cosine \: rule \: in \: the \: general \: form : \\ \boxed{\cos(C) = \frac{{a}^(2) + {b}^(2) - {c}^(2)}{2ab} } \\ where \to \\ \boxed{C} = the \: missing \: angle \\ \boxed{c} = the \: side \: opposite \: to \: angle \: \boxed{C} \\ note : \to \: that \: \boxed{C} \: can \: always \: be \: applied \: to \: any \: \\ missing \: angle.\\ \\ \boxed{ lets \: first\: find \: angle \: X}: \to \\ for \: angle \boxed{X} \: the \: cosine \: rule \: can \: be \: written \: as : \\ \boxed{\cos(X) = \frac{{y}^(2) + {z}^(2) - {x}^(2)}{2yz} } \\ where : x \: y \: and \: z \: are \: the \: given \: sides \to \\ x = 20 \\ y = 22 \\ z = 17\\then \: \to \\ \cos(X) = \frac{{22}^(2) + {17}^(2) - {20}^(2)}{2(22)(17)} \\ \\ \cos(X) = (373)/(748)\\ \cos(X) = 0.4986631016 \\X = \ cos {}^( - 1) (0.4986631016) \\ \boxed{X = \:60.08 } \\ .......................................................... \\ \\ \boxed{ lets \: find \: angle \: Y \: next}: \to\\for \: angle \boxed{Y} \: the \: cosine \: rule \: can \: be \: written \: as : \\ \boxed{\cos(Y) = \frac{{x}^(2) + {z}^(2) - {y}^(2)}{2xz} } \\ where : x \: y \: and \: z \: are \: the \: given \: sides \to \\ x = 20 \\ y = 22 \\ z = 17\\then \: \to \\ \cos(Y) = \frac{{20}^(2) + {17}^(2) - {22}^(2)}{2(20)(17)} \\ \\ \cos(Y) = (205)/(680)\\ \cos(Y) = 0.3014705882 \\Y = \ cos {}^( - 1) (0.3014705882) \\ \boxed{Y = \:72.45 } \\ .......................................................... \\ \\ \boxed{ lets \: finaly \: find \: angle \: Z}: \to \\ to \: do \: this \: you \: can \: aswell \: use \: the \: cosine \: rule : \\ but \: lets \: try \: some \: new \: laws \to \\ X + Y + Z = 180 \: \to \: (sum \:o f \: angles) \\ 60.08 + 72.45 + Z = 180 \\ Z = 180 - (60.08 + 72.45 ) \\ Z = 180 -132.53 \\ \boxed{Z =47.47}

♨Rage♨

User Gustav Grusell
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories