86.7k views
0 votes
Simplify.
Remove all perfect squares from inside the square root.
✓112a^6

Simplify. Remove all perfect squares from inside the square root. ✓112a^6-example-1
User Buvy
by
4.7k points

2 Answers

1 vote

Answer:


4√(7)a^3

Explanation:


√(112a^6) \\\\\mathrm{Apply\:radical\:rule\:}\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}\\\\=√(112)√(a^6)\\\\=4√(7)√(a^6)\\\\\mathrm{Apply\:exponent\:rule}:\quad \:a^(bc)=\left(a^b\right)^c\\\\a^6=a^(3*\:2)=\left(a^3\right)^2\\\\=4√(7)√(\left(a^3\right)^2)\\\\\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a\\\\√(\left(a^3\right)^2)=a^3\\\\=4√(7)a^3

User Chopi
by
5.0k points
3 votes

The
\( √(112a^6) \) simplifies to
\( 4a^3 √(7) \).

To simplify
\( √(112a^6) \), you can break down the expression into its prime factorization and then identify the perfect squares.


\[ √(112a^6) = √(2^4 \cdot 7 \cdot a^6) \]

Now, separate the perfect squares and non-perfect squares:


\[ √(2^4 \cdot 7 \cdot a^6) = √((2^2)^2 \cdot 7 \cdot (a^3)^2) \]

Now, take the square root of the perfect squares:


\[ 2^2 \cdot a^3 \cdot √(7) \]

Combine the terms:


\[ 4a^3 √(7) \]

So,
\( √(112a^6) \) simplifies to
\( 4a^3 √(7) \).

User Christopherbalz
by
5.1k points