20.5k views
25 votes
Find the remainder when 2x^3-5x^2+x-3 is divided by (x-1)

2 Answers

4 votes

Answer:

-7.

Explanation:

Using the Remainder Theorem :

If f(x) is divided by x-1 then the remainder is f(1), so

The required remainder

= f(1) = 2(1)^3 - 5(1)^2 + (-1) - 3

= 2 - 5 - 1 - 3

= -7.

User Hofbr
by
2.7k points
10 votes

Answer:

remainder = -5

Explanation:

Divide using long division:


\large \begin{array}{r}2x^2-3x-2\phantom{)}\\x-1{\overline{\smash{\big)}\,2x^3-5x^2+x-3\phantom{)}}}\\\underline{-~\phantom{(}(2x^3-2x^2)\phantom{-b))))))}}\\0-3x^2+x-3\phantom{)}\\ \underline{-~\phantom{()}(-3x^2+3x)\phantom{-b}}\\ 0-2x-3\phantom{)}\\\underline{-~\phantom{()}(-2x+2)}\\ -5\end{array}

User Msroot
by
3.5k points