Answer:
Sn=2n{2a+(n−1)d}
a+(n−1)d=31⇒a=31−4(n−1)
∴136=2n{2[31−4(n−1)]+(n−1)d}
n[70−8n+4n−4]=272
n(66−4n)=272
4n2−66n+272=0
2n2−33n+136=0
2n(n−8)−17(n−8)=0
(2n−17)(n−8)=0
∴n=8
Explanation:
The number of terms are 8. Step-by-step explanation: Given : The sum n terms of an A.P is 136 the common difference is 4 and last term is 31.
1.6m questions
2.0m answers