Complete Question
The complete question is shown on the first uploaded image
Answer:
a
![P(0.51 < \^ p < 0.61 ) = 0.2587](https://img.qammunity.org/2021/formulas/mathematics/college/bdxw5x1848d7ribir3u84fpfd9pgf8quzs.png)
b
![P(\^ p > 0.71 ) = 0.15165](https://img.qammunity.org/2021/formulas/mathematics/college/dcahcavroduxibk71k65yvpefxzldxpia1.png)
Explanation:
From the question we are told that
The population proportion is
The sample size is n = 50
Generally the mean of this sampling distribution is
![\mu_(x) = p = 0.64](https://img.qammunity.org/2021/formulas/mathematics/college/c9syuq738l8i5nt99yx0huigigu2quwob6.png)
Generally the standard deviation is mathematically represented as
![\sigma = \sqrt{ (p(1- p ))/(n ) }](https://img.qammunity.org/2021/formulas/mathematics/college/oqw0f6vf36jltqpbb0ipev8s323z4idfc1.png)
=>
![\sigma = \sqrt{ (0.64(1- 0.64 ))/( 50) }](https://img.qammunity.org/2021/formulas/mathematics/college/judrlr7cxsow4mut4n89ypd0qs6y6tsoy6.png)
=>
![\sigma = 0.068](https://img.qammunity.org/2021/formulas/mathematics/college/kfp5pxl9whpmicjn3ms788pupcry5e12yl.png)
Generally the probability that the value of
will be between 0.54 and 0.61 is mathematically represented as
![P(0.51 < \^ p < 0.61 ) = P( (0.5 4 - \mu_(x))/(\sigma ) < (\^ p- \mu_(x))/(\sigma ) < (0.6 1 - \mu_(x))/(\sigma ) )](https://img.qammunity.org/2021/formulas/mathematics/college/t34gmyp0sp5ulircy4oafiz37urvpgl8pl.png)
![(\^ p -\mu)/(\sigma ) = Z (The \ standardized \ value\ of \ \^ p )](https://img.qammunity.org/2021/formulas/mathematics/college/v2encr7gz5rralzzabc1blu9iikcxvhn9a.png)
![P(0.51 < \^ p < 0.61 ) = P( (0.5 4 - 0.64)/(0.068 ) < Z < (0.6 1 - 0.64)/(0.068) )](https://img.qammunity.org/2021/formulas/mathematics/college/p96g4z4bqxkejzd6lo0b1lj5nevw8rxm1s.png)
![P(0.51 < \^ p < 0.61 ) = P(-1.470 < Z < -0.4412 )](https://img.qammunity.org/2021/formulas/mathematics/college/h91xga520zwul340a8riv8r93ptxfkp5tw.png)
=>
![P(0.51 < \^ p < 0.61 ) = P( Z < -0.4412 ) - P(Z < -1.470 )](https://img.qammunity.org/2021/formulas/mathematics/college/3c4ky7new5mrkolz3vdu2r78xt8cfgan8t.png)
From the z table the probabilities of ( Z < -0.4412 ) and (Z < -1.912 ) is
![P ( Z < -0.4412 ) = 0.32953](https://img.qammunity.org/2021/formulas/mathematics/college/nsgn0ipumg97c1p86sz2k0c5k5flokm75a.png)
and
![P(Z < -1.470 ) = 0.070781](https://img.qammunity.org/2021/formulas/mathematics/college/ysmkdulmyjbm15jde7i1xaq3ot0n4hs16y.png)
Generally
![P(0.51 < \^ p < 0.61 ) = 0.32953 -0.070781](https://img.qammunity.org/2021/formulas/mathematics/college/g7zqcqc3wwmobn70i2gjojvwyqu5ciqife.png)
![P(0.51 < \^ p < 0.61 ) = 0.2587](https://img.qammunity.org/2021/formulas/mathematics/college/bdxw5x1848d7ribir3u84fpfd9pgf8quzs.png)
Generally the probability that the value of
will be greater than 0.71 is mathematically represented as
![P(\^ p > 0.71 ) = P( (\^ p - \mu_(x))/(\sigma) > (0.71 - 0.64 )/( 0.068 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/oef6km49cocjjkkzlad10dhb6lsrts3njw.png)
=>
![P(\^ p > 0.71 ) = P( Z > 1.0294 )](https://img.qammunity.org/2021/formulas/mathematics/college/itul9783gbiq64ja3k14gojsaf1rcnirod.png)
From the z table the probabilities of ( Z > 1.0294 )
![P( Z > 1.0294 ) = 0.15165](https://img.qammunity.org/2021/formulas/mathematics/college/t1ag9816klyndw2tsvfdehrof9sudfpe2f.png)
So
![P(\^ p > 0.71 ) = 0.15165](https://img.qammunity.org/2021/formulas/mathematics/college/dcahcavroduxibk71k65yvpefxzldxpia1.png)