38.3k views
0 votes
In ΔHIJ, \text{m}\angle H = (4x+1)^{\circ}m∠H=(4x+1) ∘ , \text{m}\angle I = (2x-6)^{\circ}m∠I=(2x−6) ∘ , and \text{m}\angle J = (6x-7)^{\circ}m∠J=(6x−7) ∘ . Find \text{m}\angle J.M∠J.

1 Answer

7 votes

Given:

In ΔHIJ, m∠H=(4x+1)° , m∠I=(2x−6)°, and m∠J=(6x−7)° .

To find:

The m∠J.

Solution:

According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees.

In ΔHIJ,


m\angle H+m\angle I+m\angle J=180^\circ [Angle sum property]


(4x+1)^\circ+(2x-6)^\circ+(6x-7)^\circ=180^\circ


(12x-12)^\circ=180^\circ


12x-12=180

Add 12 on both sides.


12x=180+12


12x=192

Divide both sides by 12.


x=16

Now,


m\angle J=(6x-7)^\circ


m\angle J=(6(16)-7)^\circ


m\angle J=(96-7)^\circ


m\angle J=89^\circ

Therefore, the measure of angle J is 89 degrees.

User Cojones
by
8.4k points