125k views
1 vote
Secx- cosx = sinx tanx

User Zefick
by
4.1k points

1 Answer

6 votes

Answer:

See Explanation

Explanation:


\sec \: x - cos \: x = \sin \: x \tan \: x \\ \\ LHS = \sec \: x - cos \: x \\ \\ = (1)/( \cos x) - cos \: x \\ \\ = \frac{1 - { \cos x}^(2) }{ \cos x} \\ \\ = \frac{ { \sin x}^(2) }{ \cos x} \\ \\ = ( \sin \: x * \sin x)/( \cos x) \\ \\ = \sin x \: tan x \\ \\ = RHS \\ \\ thus \: proved \\

User Taseer
by
4.6k points