![\huge\underline\mathcal{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}](https://img.qammunity.org/2023/formulas/mathematics/college/pimbwwc3phzb8a585x924ckhk1fkfrg42g.png)
The question can be easily solved applying trigonometry ~
We know that ,
![\bold{ \sin(\theta) = (perpendicular)/(hypotenuse)} \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/cmdgtespmcc6rurykuwycfe332gurpxskc.png)
- Given - θ = 30° and hypotenuse = 6cm
- To find - the perpendicular , i.e. , value of x
Substituting the values in the formula of sin θ
![\sin(30\degree) = (x)/(6) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/6q6vevcntebp2ualbwnsav99w2y2h32wjl.png)
now , we know that sin 30° = 1/2
![\therefore \: \implies (1)/(2) = (x)/(6) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/hfy9uie8xbthf2fahr9uihql3c0dazhqi0.png)
on cross multiplying ,
![\implies \: 2x = 6 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/cet0ceso7enkiehicngl9k2ddwo63hc1hj.png)
dividing both sides of the equation by 2 ,
![\implies \: \cancel (2x)/(2) = \cancel(6)/(2) \\ \\ \implies \: \boxed{x = 3 \: cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8nfw6royhcy7uqpexnbavy0r0rjvoy38bn.png)
hope helpful ~