91.1k views
2 votes
Please help me do this question genius minds

Please help me do this question genius minds-example-1
User Mcadio
by
8.0k points

1 Answer

12 votes


\text{Given that,}\\\\\theta =\tan^(-1) \left(\frac y x \right)\\\\\\(\partial \theta)/(\partial x) = (\partial )/(\partial x) \tan^(-1) \left(\frac yx \right)\\ \\\\~~~~~~=\frac{1}{1 +\tfrac{y^2}{x^2}} \cdot y (\partial )/(\partial x) \left(\frac 1x \right)\\\\\\~~~~~~=(yx^2)/(x^2 +y^2) \cdot (-1)x^(-2)\\ \\\\~~~~~~=-(yx^2)/(x^2(x^2 +y^2))\\\\\\~~~~~~=- (y)/(x^2 +y^2)\\\\\\


(\partial^2\theta)/( \partial x^2) = -(\partial )/( \partial x) \left( (y)/(x^2+y^2) \right)\\\\\\~~~~~~=-y(\partial)/(\partial x) \left(\frac 1{x^2 +y^2} \right)\\\\\\~~~~~~=y (-1)(-1) (x^2 +y^2)^(-2) (\partial )/(\partial x)(x^2 +y^2)\\\\\\~~~~~~=(y)/((x^2 +y^2)^2) \cdot (2x+0)\\\\\\~~~~~~=(2xy)/((x^2 +y^2)^2)


\text{Similarly,}~~\\ \\(\partial \theta)/(\partial y )= (x)/(x^2 +y^2)\\\\\\(\partial^2 \theta)/(\partial y^2 ) = -(2xy)/((x^2 +y^2)^2)\\\\\\\text{Now,}\\\\(\partial^2 \theta)/(\partial x^2 )+(\partial^2 \theta)/(\partial y^2 )\\\\\\=(2xy)/((x^2 +y^2)^2) -(2xy)/((x^2 +y^2)^2)\\\\\\=0

User Chase CB
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories