Yuna grows two varieties of pears—Bosc and Anjou. She took a sample of each variety to test if their average caloric contents were significantly different. Here is a summary of her results:
Calories
Variety nnn Mean StDev SE mean
Bosc 656565 120120120 151515 1.861.861, point, 86
Anjou 656565 116116116 131313 1.611.611, point, 61
99\% \text{ CI for } \mu_\text{B} - \mu_{\text{A}}\text{:}99% CI for μ
B
−μ
A
:99, percent, start text, space, C, I, space, f, o, r, space, end text, mu, start subscript, start text, B, end text, end subscript, minus, mu, start subscript, start text, A, end text, end subscript, start text, colon, end text 4 \pm 6.444±6.444, plus minus, 6, point, 44
Yuna wants to use these results to test \text{H}_0\text{: }\mu_\text{B}=\mu_\text{A}H
0
: μ
B
=μ
A
start text, H, end text, start subscript, 0, end subscript, start text, colon, space, end text, mu, start subscript, start text, B, end text, end subscript, equals, mu, start subscript, start text, A, end text, end subscript versus \text{H}_\text{a}\text{: }\mu_\text{B} \\eq \mu_\text{A}H
a
: μ
B
=μ
A
start text, H, end text, start subscript, start text, a, end text, end subscript, start text, colon, space, end text, mu, start subscript, start text, B, end text, end subscript, does not equal, mu, start subscript, start text, A, end text, end subscript. Assume that all conditions for inference have been met.
Based on the interval, what do we know about the corresponding P-value and conclusion at the \alpha=0.01α=0.01alpha, equals, 0, point, 01 level of significance?