Answer:
Part A: 146°
Part B: 70°
Part C: 104°
Explanation:
Part A:
m<SHI = 34° (given)
m<SHI + m<MIH = 180° (same side interior angles of a transversal are supplementary)
34° + m<MIH = 180° (Substitution)
Subtract 34° from each side
m<MIH = 180° - 34°
m<MIH = 146°
Part B:
m<HAL = 110° (given)
m<HAV + m<HAL = 180° (linear pair)
m<HAV + 110° = 180° (substitution)
Subtract 110° from each side
m<HAV = 180° - 110°
m<HAV = 70°
m<AVM = m<HAV (alternate interior angles are congruent)
m<AVM = 70°
Part C:
The obtuse angle formed = m<HAV + SHI (exterior angle of a triangle = the sum of two opposite interior angles of a ∆)
The obtuse angle formed = 70° + 34° = 104°