22.5k views
4 votes

( (1)/( x) - (1)/(12) )/(x - 12)

how do i solve when looking for the limit as x approches 12?​

1 Answer

5 votes

Answer:


\lim_(x \to 12) ((1)/(x)-(1)/(12) )/(x-12) =(-1)/(144)

Explanation:

Step 1: Define


\lim_(x \to 12) ((1)/(x)-(1)/(12) )/(x-12)

Step 2: Solve

  1. Numerator; Common denominator:
    \lim_(x \to 12) ((12)/(12x)-(x)/(12x) )/(x-12)
  2. Numerator; Combine like terms:
    \lim_(x \to 12) ((12-x)/(12x) )/(x-12)
  3. Rewrite entire fraction:
    \lim_(x \to 12) (12-x)/(12x) / x-12
  4. Rewrite operation:
    \lim_(x \to 12) (12-x)/(12x) \cdot (1)/(x-12)
  5. Multiply:
    \lim_(x \to 12) (12-x)/(12x(x-12))
  6. Factor numerator:
    \lim_(x \to 12) (-(x - 12))/(12x(x-12))
  7. Simplify:
    \lim_(x \to 12) (-1)/(12x)
  8. Evaluate limit:
    (-1)/(12(12)) =(-1)/(144)
User Serhii Shliakhov
by
5.1k points