82.8k views
0 votes
High School is selling tickets to its Spring Concert. Adult tickets cost $4 and student tickets cost $2.50.900 tickets are sold and the

school makes $2820. Which system of linear equations represent this situation.

1 Answer

5 votes

Final answer:

The situation can be modeled by the system of linear equations: 4x + 2.5y = 2820 for the total revenue and x + y = 900 for the total number of tickets sold, where x is the number of adult tickets and y is the number of student tickets.

Step-by-step explanation:

The situation presented involves selling tickets to a school concert with two different pricing options for adults and students. This scenario can be represented by the following system of linear equations where x represents the number of adult tickets and y represents the number of student tickets:

4x + 2.5y = 2820 (total revenue equation)

x + y = 900 (total tickets equation)

The first equation comes from the fact that adult tickets are priced at $4 and student tickets are priced at $2.50, and the total revenue collected is $2820. The second equation represents the total number of tickets sold, which is 900. To solve the system of equations, one could use methods such as substitution, elimination, or matrix operations to find the values of x and y.

User Honk Der Hase
by
5.5k points