Answer:
A. 40°
Explanation:
Given:
m<BEF =25°
m<B = 50°
m<ACB = 65°
Required:
m<D
SOLUTION:
m<CED = m<BEF (vertical angles theorem)
m<CED = 25° (Substitution)
m<ACB + m<DCE = 180° (linear pair theorem)
65° + m<DCE = 180° (substitution)
Subtract 65 from both sides
m<DCE = 180° - 65°
m<DCE = 115°
m<DCE + m<CED + m<D = 180° (sum of triangle)
115° + 25° + m<D = 180° (substitution)
140° + m<D = 180°
Subtract 140° from both sides
m<D = 180° - 140°
m<D = 40°