Answer:
The probability that the man arrives first is 0.50.
Explanation:
Let X denote the arrival time of the man and Y denote the arrival time of the woman.
It is provided that:
![X\sim U[15,45]\\\\Y\sim U[0,60]](https://img.qammunity.org/2021/formulas/mathematics/college/zkrzvy55nhw68f6fg00ywwpdjhjj4r1iak.png)
The pdf of X an Y are:
![f_(X)(x)=(1)/(45-15)=(1)/(30);\ 15<X<45\\\\f_(Y)(y)=(1)/(60-0)=(1)/(60);\ 0<Y<60](https://img.qammunity.org/2021/formulas/mathematics/college/j9ioe70rf0ztu64944w9t21010n0h7dhcr.png)
It is provided that X and Y are independent of each other.
Then the joint pdf of X and Y is:
![f_(XY)(x,y)=f_(X)(x)* f_(Y)(y)\\\\\Rightarrow f_(XY)(x,y)=(1)/(30)* (1)/(60)\\\\\Rightarrow f_(XY)(x,y)=(1)/(1800);\ 15<X<45,\ 0<Y<60](https://img.qammunity.org/2021/formulas/mathematics/college/k571w473vc68q8eoiku6bbp9j1463or5jd.png)
Compute the probability that the man arrives first as follows:
![P(X<Y)=\int\limits^(45)_(15) {\int\limits^(60)_(x) {(1)/(1800)} \, dy } \,dx](https://img.qammunity.org/2021/formulas/mathematics/college/34yx5rsnanrlxg0wsa7sclb05fuz3pgw4l.png)
![=(1)/(1800)* \int\limits^(45)_(15) y|^(60)_(x) \,dx\\\\=(1)/(1800)* \int\limits^(45)_(15) {60-x} \,dx\\\\=(1)/(1800)* |60x-(x^(2))/(2)|^(45)_(15)\\\\=((1687.5-787.5))/(1800)\\\\=(900)/(1800)\\\\=(1)/(2)\\\\=0.50](https://img.qammunity.org/2021/formulas/mathematics/college/2nbxi66s08vz5k3nlxruk4p2yt1vrdgb1r.png)
Thus, the probability that the man arrives first is 0.50.