Answer:
The velocity of the struck billiard ball after collision is 2.41 m/s at an angle of 62.8⁰.
Step-by-step explanation:
Given;
initial velocity of the billiard ball, u₁ = 5.3 m/s
initial velocity of the second ball, u₂ = 0
final velocity of the first ball, v₁ = 4.72 m/s at θ = 27.0°
final velocity of the second ball, v₂ = ?
Apply the principle of conservation of kinetic energy;
¹/₂m₁u₁² + ¹/₂m₂u₂² = ¹/₂m₁v₁² + ¹/₂m₂v₂²
m₁u₁² + m₂u₂² = m₁v₁² + m₂v₂²
m₁u₁² + m₂(0) = m₁v₁² + m₂v₂²
m₁u₁² = m₁v₁² + m₂v₂²
m₁ = m₂
u₁² = v₁² + v₂²
v₂² = u₁² - v₁²
v₂² = (5.3)² - (4.72)²
v₂² = 5.812
v₂ = √5.812
v₂ = 2.41 m/s
The direction of the second ball is given by;
v₂sinθ = v₁sin27
sinθ = (v₁sin27) / (v₂)
sinθ = (4.72 x 0.454) / (2.41)
sinθ = 0.8892
θ = sin⁻¹ (0.8892)
θ = 62.8⁰
Thus, the velocity of the struck billiard ball after collision is 2.41 m/s at an angle of 62.8⁰.