Answer: 0.69727
Explanation:
Given: Sample size : n= 4
Number of defective calculators = 12
Number of non-defective calculators = 36
Total calculators = 12+36=48
Let X = Number of defective calculators.
The probability that a least one of the calculators is defective will be :
![P(X\geq1)=P(X=1)+P(X=2)+P(X=3)+P(X=4)\\\\=(^(12)C_1*\ ^(36)C_(3))/(^(48)C_4)+(^(12)C_2*\ ^(36)C_(2))/(^(48)C_4)+(^(12)C_3*\ ^(36)C_(1))/(^(48)C_4)+(^(12)C_4*\ ^(36)C_(0))/(^(48)C_4)\\\\=(12*7140)/(194580)+(66*\ 630)/(194580)+(220*\ 36)/(194580)+(495*\ 1)/(194580)\approx0.69727](https://img.qammunity.org/2021/formulas/mathematics/college/wbauo2bdfzv4sh09idtp0ctyq4edw01ry3.png)
Hence, the required probability = 0.69727