Answer:
1.
![\\ormalsize \boxed{\textsf{$4√(2)\cdot√(2)$}} \implies \boxed{8}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v1vjywi4jgtck4hutmkgjf80enigrn2nyk.png)
2.
![\\ormalsize \boxed{\textsf{$3√(7)-2√(7)$}} \implies \\ormalsize \boxed{\textsf{$√(7)$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a5wkre0z0w0y4i0o2qfmvbohclme86m2ah.png)
3.
![\\ormalsize \boxed{\textsf{$(√(7))/(2√(7))$}} \implies \\ormalsize \boxed{\textsf{$(1)/(2)$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/va8g4tu60ptayzn5hl4m6f9ipws4dye01t.png)
4.
![\\ormalsize \boxed{\textsf{$2√(5)\cdot 2√(5)$}} \implies \boxed{20}](https://img.qammunity.org/2023/formulas/mathematics/high-school/69rb56oa9jeiey9g6sg3ypd0430am1t4cc.png)
Explanation:
The Radical Rules by Lial et al. (2017) state that:
Product rule:
- "The product of two roots is the root of the product."
Quotient rule:
- "The root of a quotient is the quotient of the roots."
1.
![\implies \\ormalsize \textsf{$4√(2)\cdot√(2)$}\\\\\\ormalsize \implies \textsf{$4√(2\cdot2)$}\\\\ \implies \\ormalsize \textsf{$4√(4)$}\\\\ \implies\\ormalsize \textsf{$4\cdot 2 = 8$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ww6g0j8vxshdw8msnk4wv2yjzvdm6td49j.png)
![\\ormalsize \boxed{\textsf{$4√(2)\cdot√(2)$}} \implies \boxed{8}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v1vjywi4jgtck4hutmkgjf80enigrn2nyk.png)
2.
![\implies \\ormalsize \textsf{$3√(7)-2√(7)$}\\\\ \implies\\ormalsize \textsf{$(3-2)√(7)$}\\\\ \implies\\ormalsize \textsf{$1√(7)$}\\\\ \implies\\ormalsize \textsf{$√(7)$}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1pow9kw9c0li8ttc8vzr8jot38pfke0xl3.png)
![\\ormalsize \boxed{\textsf{$3√(7)-2√(7)$}} \implies \\ormalsize \boxed{\textsf{$√(7)$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a5wkre0z0w0y4i0o2qfmvbohclme86m2ah.png)
3.
![\implies \\ormalsize \textsf{$(√(7))/(2√(7))$}\\\\\\ \implies\\ormalsize \textsf{$(1√(7))/(2√(7))$}\\\\\\ \implies\\ormalsize \textsf{$(1)/(2)$}\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/t355ukcfaavk63c6xo7tk8k7gil7fgqp29.png)
![\\ormalsize \boxed{\textsf{$(√(7))/(2√(7))$}} \implies \\ormalsize \boxed{\textsf{$(1)/(2)$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/va8g4tu60ptayzn5hl4m6f9ipws4dye01t.png)
4.
![\implies \\ormalsize \textsf{$2√(5)\cdot 2√(5)$}\\\\ \implies\\ormalsize \textsf{$2\cdot2√(5\cdot5)$}\\\\ \implies \\ormalsize \textsf{$4√(25)$}\\\\ \implies \\ormalsize \textsf{$4\cdot5=20$}\\\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/pq8vtjx9xuzdgus2sjianhymnzw5fm5si5.png)
![\\ormalsize \boxed{\textsf{$2√(5)\cdot 2√(5)$}} \implies \boxed{20}](https://img.qammunity.org/2023/formulas/mathematics/high-school/69rb56oa9jeiey9g6sg3ypd0430am1t4cc.png)
Reference:
Lial, M., Hornsby, J., Schneider, D., & Daniels, C. (2017). College Algebra and Trigonometry, Global Edition (6th ed., p. 94).