334,766 views
19 votes
19 votes
Simplify


\sqrt{81-18√(7)+7 }

User J Blaz
by
2.9k points

2 Answers

11 votes
11 votes

Answer:

The given equation is expansion of (a-b)² = a²-2ab+b²


\sqrt{81-18√(7)+7} \\ \sqrt{ {9}^(2) -2 * 9 * √(7)+ { √(7) }^(2) } \\ \sqrt{ {(9 - √(7))}^(2) } \\ {(9 - √(7))}

hope that help.

User BLAZORLOVER
by
2.4k points
11 votes
11 votes

Answer:


9-√(7)

Explanation:

Given expression:
\sqrt{81-18√(7)+7}

To simplify the given expression, use the "A minus B Whole Square" identity.

A minus B Whole Square identity


(a-b)^2=a^2-2ab+b^2

Comparing
81-18√(7)+7 to the right side of the identity:


  • a^2=81 \implies a=√(81)=9

  • b^2=7\implies b=√(7)

  • -2ab=-18√(7)=-2 \cdot 9√(7)

Therefore:


(9-√(7))^2=81-18√(7)+7

Finally:


\sqrt{81-18√(7)+7}=\sqrt{(9-√(7))^2}=9-√(7)

User Krishna Ganeriwal
by
3.1k points