114k views
5 votes
Find the general solution of y''' + 9y'' + y' − 111y = 0 if it is known that y1 = e−6x cos(x) is one solution.

1 Answer

1 vote

Answer:


\mathbf{y(x) = ((c_1 + c_2) \ cos (x))/(e^(6x) )+ (i(c_1 -c_2) \ sin (x))/(e^(6x))+ c_3e^(3\ x)}

Explanation:

The objective of this question is to solve:


(dy(x))/(dx)+ 9(d^2y(dx))/(dx^2)+(d^3y(x))/(dx^3)-111y(x) = 0 :

Suppose the general solution is proportional to
e^(\lambda x) for
\lambda is constant; Then:

Let's replace
y(x) = e^(\lambda\ x) into the above equation:

i.e.


(d^3)/(dx^3)(e ^(\lambda x) )+ 9 (d^2)/(dx^2)(e ^(\lambda x) ) + (d)/(dx)(e ^(\lambda x) )- 111 \ e ^(\lambda x) = 0

To Replace:


(d^3)/(dx^3)(e ^(\lambda x) ) with
\lambda^3 e ^(\lambda x )


(d^2)/(dx^2)(e ^(\lambda x) ) \ with \ \lambda^2 e^(\lambda\ x)


(d)/(dx)(e ^(\lambda x) ) \ with \ \lambda e ^(\lambda \ x)

Thus;


\lambda^3 e ^(\lambda x ) +
9 \lambda^2 e^(\lambda\ x) +
\lambda e ^(\lambda \ x) - 111
e ^(\lambda \ x) = 0


e ^(\lambda \ x) (\lambda ^3 + 9 \lambda ^2 + \lambda - 111 )= 0

In as much as
e^( \lambda x)\\eq 0 for any finite
\lambda; Then:


\lambda ^3 + 9 \lambda ^2 + 111 = 0

By Factorization:


(\lambda - 3) ( \lambda ^2 + 12 \lambda + 37) = 0


\lambda = -6 + i \ or\ \lambda = -6 - i \ or \ \lambda = 3

However;

The root
\lambda = -6 \pm i yield;


y_1 = (x) = c_1 e ^ {(-6+i)x}


y_2 (x) = c_2e^((-6-i)x)

The root
\lambda = 3 yield;


y_3(x) = c_3 e^(3x)

The general solution is:


y(x) = y_1(x) + y_2(x) + y_3(x) = (c_1)/(c^((6-i))x)+(c_2)/(c^((6+i))x)+ c_3e^(3x)

Using Euler's Identity ;


e^(\alpha+i \beta) = e^\alpha \ cos (\beta ) + i \ e^\alpha \ sin ( \beta)


y(x) = c_1 ( (cos (x) )/(e^(6x))+ (i \ sin x )/(e^(6x) )) + c_2 ( (cos (x))/(e^(6x))- (-i \ sin (x))/(e^(6x)))+c_3 e^(3x)


\mathbf{y(x) = ((c_1 + c_2) \ cos (x))/(e^(6x) )+ (i(c_1 -c_2) \ sin (x))/(e^(6x))+ c_3e^(3\ x)}

User NewToJS
by
4.8k points