Answer:
The 99% C.I is ( 367.703, 382.297 )
Explanation:
Given that:
sample mean
= 375
Population standard deviation
= 20
Sample size n = 50
The level of significance
= 1 - C.I = 1 - 0.99 = 0.01
From z tables:
The critical value =
=
= 2.58
The margin of error E =
![* (\sigma )/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/wyyu3tiusx00177rvdq5knp2e7em6u0q22.png)
The margin of error E =
![2.58 * (20)/(√(50))](https://img.qammunity.org/2021/formulas/mathematics/college/97q7dixgw0ys8d6b6lqgypxnte0bdj8q9d.png)
The margin of error E = 7.297
The limits of 99% C.I are expressed as:
Lower limit =
= 375 - 7.297
Lower limit = 367.703
Upper limit =
= 375 + 7.297
Upper limit = 382.297
The 99% C.I is
=
![375 \pm 7.297](https://img.qammunity.org/2021/formulas/mathematics/college/rmohwsww9pmupw4davp8nxjpl4jwfiqaqx.png)
= ( 367.703, 382.297 )