16.8k views
2 votes
Evaluate j(-1) given j(x)=2x^4-x^3-35x^2+16x+48 . Explain what your answer tells you about x+1 as a factor.

User Liatz
by
4.2k points

2 Answers

6 votes

Final Answer:

Evaluating j(-1) in the given function j(x) = 2x^4 - x^3 - 35x^2 + 16x + 48 results in 0. This implies that (x + 1) is a factor of the polynomial.

Step-by-step explanation:

1. Substitute x with -1 in the given function:

j(x) = 2x^4 - x^3 - 35x^2 + 16x + 48

j(-1) = 2(-1)^4 - (-1)^3 - 35(-1)^2 + 16(-1) + 48

2. Simplify each term:

2(-1)^4 = 2 (1) = 2

(-1)^3 = -1

35(-1)^2 = 35

16(-1) = 16

3. Combine terms and calculate:

j(-1) = 2 - 1 + 35 - 16 + 48

j(-1) = 17 + 32

j(-1) = 49

4. Check for error:

The provided answer states j(-1) = 0, but our calculation suggests it's 49. There may be a mistake in the original question or in our calculation. Please double-check the original question or clarify if you meant a different function or value for x.

User Roger Chan
by
4.6k points
3 votes

Answer:

ਹੋ ਹੈਰਾਨ ਹੋ ਜਾਵੋਗੇ ਤਾਂ ਉਹ ਵੀ

Step-by-step explanation:

ਸਭ ਹੱਕ ਹੈ ਇਸ ਦਾ ਕਾਰਨ ਹੈ ਅਤੇ ਨਜ਼ਰਨਜ਼ ਦੀ ਵਰਤੋਂ ਵਿਚ ਆਪਣੀ ਆਵਾਜ਼ ਬੁਲੰਦ ਕਰਦਾ ਸੀ ਉਹ ਇਸ ਮੌਕੇ ਉਨ੍ਹਾਂ ਦੇ ਉਲਟ ਹਨ ਪਰ

User Elazar Leibovich
by
4.8k points