16.8k views
2 votes
Evaluate j(-1) given j(x)=2x^4-x^3-35x^2+16x+48 . Explain what your answer tells you about x+1 as a factor.

User Liatz
by
7.9k points

2 Answers

6 votes

Final Answer:

Evaluating j(-1) in the given function j(x) = 2x^4 - x^3 - 35x^2 + 16x + 48 results in 0. This implies that (x + 1) is a factor of the polynomial.

Step-by-step explanation:

1. Substitute x with -1 in the given function:

j(x) = 2x^4 - x^3 - 35x^2 + 16x + 48

j(-1) = 2(-1)^4 - (-1)^3 - 35(-1)^2 + 16(-1) + 48

2. Simplify each term:

2(-1)^4 = 2 (1) = 2

(-1)^3 = -1

35(-1)^2 = 35

16(-1) = 16

3. Combine terms and calculate:

j(-1) = 2 - 1 + 35 - 16 + 48

j(-1) = 17 + 32

j(-1) = 49

4. Check for error:

The provided answer states j(-1) = 0, but our calculation suggests it's 49. There may be a mistake in the original question or in our calculation. Please double-check the original question or clarify if you meant a different function or value for x.

User Roger Chan
by
7.6k points
3 votes

Answer:

ਹੋ ਹੈਰਾਨ ਹੋ ਜਾਵੋਗੇ ਤਾਂ ਉਹ ਵੀ

Step-by-step explanation:

ਸਭ ਹੱਕ ਹੈ ਇਸ ਦਾ ਕਾਰਨ ਹੈ ਅਤੇ ਨਜ਼ਰਨਜ਼ ਦੀ ਵਰਤੋਂ ਵਿਚ ਆਪਣੀ ਆਵਾਜ਼ ਬੁਲੰਦ ਕਰਦਾ ਸੀ ਉਹ ਇਸ ਮੌਕੇ ਉਨ੍ਹਾਂ ਦੇ ਉਲਟ ਹਨ ਪਰ

User Elazar Leibovich
by
8.0k points

No related questions found