182k views
2 votes
Use definition of a derivative to compute the derivative of g(x)= 1/3x^2

1 Answer

8 votes

If g(x) = 1/(3x²), the by the definition of the derivative, we have


\displaystyle g'(x) = \lim_(h\to0) \frac{g(x+h) - g(x)}h


\displaystyle g'(x) = \lim_(h\to0) \frac{\frac1{3(x+h)^2} - \frac1{3x^2}}h


\displaystyle g'(x) = \lim_(h\to0) \frac{(x^2)/(3x^2(x+h)^2) - ((x+h)^2)/(3x^2(x+h)^2)}h


\displaystyle g'(x) = \lim_(h\to0) (x^2 - (x+h)^2)/(3x^2(x+h)^2h)


\displaystyle g'(x) = \lim_(h\to0) (x^2 - x^2 - 2xh - h^2)/(3x^2(x+h)^2h)


\displaystyle g'(x) = - \lim_(h\to0) (2xh + h^2)/(3x^2(x+h)^2h)


\displaystyle g'(x) = - \lim_(h\to0) (2x + h)/(3x^2(x+h)^2)


\displaystyle g'(x) = - (2x)/(3x^4) = \boxed{-\frac2{3x^3}}

User Sangfroid
by
3.4k points