1.1k views
1 vote
Which fractions have a decimal equivalent to a repeating decimal

Which fractions have a decimal equivalent to a repeating decimal-example-1
User Sziraqui
by
6.0k points

2 Answers

2 votes

Answer: 19/3

Explanation:

If you want to find which have a decimal equivalent to a repeating decimal, all you have to do is divide each one and see which turns out to be a repeating decimal. 19 divided by 3 is 6.333333333 repeating, so it would be a repeating decimal. This is easiest to do with a calculator, but it is also important to learn how to do it by hand.

User Tad Dallas
by
5.9k points
3 votes


\bold{Hello!}\\\bold{Your~Answer~Is~Below!}

______________________________


\bold{Solution~Steps:}


1.)~Turn~the~fraction~into~a~decimal:


  • \bold{Reduce~the~fraction~(13)/(65)~to~lowest~terms~by~finding~the~GCF.}

  • \bold{13} ÷
    \bold{13=1}

  • \bold{65} ÷
    \bold{13=5}

  • \bold{(1)/(5)=0.2}


2.)~Turn~the~fraction~into~a~decimal:


  • \bold{Divide~(141)/(47) .}

  • \bold{141} ÷
    \bold{47=3}

  • \bold{3=3}


3.)~Turn~the~fraction~into~a~decimal:


  • \bold{Divide~(11)/(12) .}

  • \bold{11} ÷
    \bold{12=0.916666667}

  • \bold{0.916666666=R.epeating.}


4.)~Turn~the~fraction~into~a~decimal:


  • \bold{Divide~(19)/(3).}

  • \bold{19} ÷
    \bold{3=6.33333333}

  • \bold{6.33333333=R.epeating.}

______________________________


\bold{Answer:}


  • \bold{The~R.epeating~decimals~are:(11)/(12),(19)/(3).}

______________________________


\bold{Hope~this~helps,}\\\bold{And~best~of~luck!}\\\\\bold{~~~~~-TotallyNotTrillex}

User WelshDragon
by
5.9k points