Answer:
19.1 m, 52.0°
Step-by-step explanation:
Given:
v₀ₓ = 0 m/s
v₀ᵧ = 2.88 m/s
vᵧ = 0 m/s
aₓ = 0.350 m/s² cos(-52.0°) ≈ 0.215 m/s²
aᵧ = 0.350 m/s² sin(-52.0°) ≈ -0.276 m/s²
Find: Δx and Δy
First, find time.
vᵧ = aᵧt + v₀ᵧ
0 m/s = (-0.276 m/s²) t + 2.88 m/s
t = 10.4 s
Now find the displacement components Δx and Δy.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (0 m/s) (10.4 s) + ½ (0.215 m/s²) (10.4 s)²
Δx = 11.7 m
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (2.88 m/s) (10.4 s) + ½ (-0.276 m/s²) (10.4 s)²
Δy = 15.0 m
The magnitude of the displacement is:
d² = Δx² + Δy²
d² = (11.7 m)² + (15.0 m)²
d = 19.1 m
The direction of the displacement is:
θ = atan(Δy / Δx)
θ = atan(15.0 m / 11.7 m)
θ = 52.0°