115k views
5 votes
HELP ME, PLEASE. 100 POINTS

find x:

(x-1)\sqrt{x^(2)-2x+4 } +(x-3)\sqrt{x^(2)-6x+12 }+2x-4=0

User Amankkg
by
7.2k points

2 Answers

3 votes

Answer:

x=2

Explanation:

User AgentRev
by
8.4k points
3 votes

Answer:


\huge \boxed{ \boxed{ \tt x = 2}}

Explanation:

to understand this

you need to know about:

  • equation

given:


  • (x-1)\sqrt{x^(2)-2x+4 } +(x-3)\sqrt{x^(2)-6x+12 }+2x-4=0 \atop

to solve:

  • x

let's solve:


  1. \sf rewrite \: (x - 1) \sqrt{ {x }^(2) - 2x + 4} \: as \: (x - 2)( \sqrt{ {x}^(2) - 2x + 4 } ) + (x + 1) ( \sqrt{ {x}^(2) - 2x + 4}) : \\ (x-2)\sqrt{x^(2)-2x+4 } +(x + 1)( \sqrt{ {x}^(2) - 2x + 4)} + (x-3)\sqrt{x^(2)-6x+12 }+2x-4=0

  2. \sf rewrite (x - 3) \sqrt{ {x}^(2) - 6x + 12 } \: as \: (x - 2) \sqrt{ {x}^(2) - 6x + 12} - : \\ (x-2)\sqrt{x^(2)-2x+4 } +(x + 1)\sqrt{ {x}^(2) - 2x + 4} + (x-2)\sqrt{x^(2)-6x+12 } + (x - 1) \sqrt{ {x}^(2) - 6x + 12} +2x-4=0

  3. (x - 2) \{\sqrt{ {x}^(2) - 2x + 4 } + \sqrt{ {x}^(2) - 6x + 12} + \frac{4}{\sqrt{ {x}^(2) - 2x + 4 } + \sqrt{ {x}^(2) - 6x + 12} } + 2 \} = 0

  4. \sf \: divide \: both \: sides \: by \: \{\sqrt{ {x}^(2) - 2x + 4 } + \sqrt{ {x}^(2) - 6x + 12} + \frac{4}{\sqrt{ {x}^(2) - 2x + 4 } + \sqrt{ {x}^(2) - 6x + 12} } + 2 \} : \\ x - 2 = 0

  5. \therefore \: x = 2

User Ray Fix
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories