202k views
15 votes
Someone please help

Someone please help-example-1

1 Answer

8 votes

Answer:

Part (a)

Given:


\displaystyle \int\limits_(1)^(3) x^2 \:dx

Trapezium Rule


\displaystyle \int\limits_(a)^(b) y \:dx \approx (1)/(2)h\left[(y_0+y_n)+2(y_1+y_2+...+y_(n-1))\right] \quad \textsf{where }h=(b-a)/(n)

Calculate the width of each strip (h).

Given:

  • a = 1
  • b = 3
  • n = 5


\implies h=(3-1)/(5)=0.4

Create a table with the x and y values:


\large\begin{array} c \cline{1-7} x & 1 & 1.4 & 1.8 & 2.2 & 2.6 & 3\\\cline{1-7} y & 1 & 1.96 & 3.24 & 4.84 & 6.76 & 9\\\cline{1-7}\end{array}

Put all the values into the formula:


\begin{aligned}\displaystyle \int\limits_(1)^(3) x^2 \:dx & \approx (1)/(2)(0.4)\left[(1+9)+2(1.96+3.24+4.84+6.76)\right]\\& = 0.2\left[10+2(16.8)\right]\\\\& = 0.2\left[10+33.6\right]\\\\& = 0.2\left[43.6\right]\\\\& = 8.72 \end{aligned}

Part (b)


\begin{aligned}\displaystyle \int\limits_(1)^(3) x^2 \:dx &=\left[(1)/(3)x^3\right]^3_1\\& = (1)/(3)(3)^3-(1)/(3)(1)^3\\& = 9-(1)/(3)\\& = (26)/(3)\end{aligned}

The exact area as a decimal is
\sf 8.\dot{6}. Therefore, the estimated answer of 8.72 is an overestimate.

Part (c)

Answer to (a) = 8.72

To find the maximum possible error:

  • Identify the last non-zero digit to the right of the decimal point → 2
  • The precision of the number is the place value: 0.01
  • Divide the precision by 2

Therefore, the maximum possible error for 8.72 is 0.005.

Part (d)

Trapezoid Error formula


|E| \leq ((b-a)^3)/(12n^2)\left[\textsf{max}|f''(x)|\right],\quad a \leq x \leq b

Calculate the second derivative:


f(x)=x^2


f'(x)=2x


f''(x)=2

Input the values into the formula:


\implies |E| \leq ((3-1)^3)/(12n^2)(2) < 0.001


\implies 16 \leq 0.012n^2


\implies 36.5148...\leq n


\implies 37\leq n

User Joseph Girgis
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories