Answer:
Part (a)
Given:

Trapezium Rule
![\displaystyle \int\limits_(a)^(b) y \:dx \approx (1)/(2)h\left[(y_0+y_n)+2(y_1+y_2+...+y_(n-1))\right] \quad \textsf{where }h=(b-a)/(n)](https://img.qammunity.org/2023/formulas/mathematics/college/3598tl44fregnhyigf172gd8maanwsf5lt.png)
Calculate the width of each strip (h).
Given:

Create a table with the x and y values:

Put all the values into the formula:
![\begin{aligned}\displaystyle \int\limits_(1)^(3) x^2 \:dx & \approx (1)/(2)(0.4)\left[(1+9)+2(1.96+3.24+4.84+6.76)\right]\\& = 0.2\left[10+2(16.8)\right]\\\\& = 0.2\left[10+33.6\right]\\\\& = 0.2\left[43.6\right]\\\\& = 8.72 \end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/6svm76enajpviier75itu4abtj3gxxx5h8.png)
Part (b)
![\begin{aligned}\displaystyle \int\limits_(1)^(3) x^2 \:dx &=\left[(1)/(3)x^3\right]^3_1\\& = (1)/(3)(3)^3-(1)/(3)(1)^3\\& = 9-(1)/(3)\\& = (26)/(3)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7ttcotg3wuk6gu7djnguqjzba5q6opdkco.png)
The exact area as a decimal is
. Therefore, the estimated answer of 8.72 is an overestimate.
Part (c)
Answer to (a) = 8.72
To find the maximum possible error:
- Identify the last non-zero digit to the right of the decimal point → 2
- The precision of the number is the place value: 0.01
- Divide the precision by 2
Therefore, the maximum possible error for 8.72 is 0.005.
Part (d)
Trapezoid Error formula
![|E| \leq ((b-a)^3)/(12n^2)\left[\textsf{max}|f''(x)|\right],\quad a \leq x \leq b](https://img.qammunity.org/2023/formulas/mathematics/college/y7bxpil6ktnlkexgbnznvldeeed4owzzgf.png)
Calculate the second derivative:



Input the values into the formula:



