Answer:
The correct answer -
1. volume of the plasmid: 2 ml
2. insert needed = 100 mg
Step-by-step explanation:
Calculating the inserted by the formula:
![(insert\ size)/(vector\ size)*(moles\ of\ insert)/(moles\ of\ vector)=(insert)/(vector)](https://img.qammunity.org/2021/formulas/biology/college/n2a1l701t5as4xaiv0c3qmfgo3no82ikoc.png)
for a mormal vector size using 50 mg of vector DNA per ligation reaction.
take x as required insert:
![(2)/(3)*(0.060)/(0.020)=(x)/(50)](https://img.qammunity.org/2021/formulas/biology/college/qw8s6qnjq7urcoghxi6nrrsh3xr2j95k9f.png)
![(2)/(3)*(3)/(1)=(x)/(50)](https://img.qammunity.org/2021/formulas/biology/college/iljwla766lfq2obx51302h91eiiv1voah6.png)
![(6)/(3)=(x)/(50)](https://img.qammunity.org/2021/formulas/biology/college/osgbdn71mv5u2vtl2hel0h02ompnre15al.png)
3x = 300
![x=(300)/(3)](https://img.qammunity.org/2021/formulas/biology/college/rabcj4wtcda5gbtvk9fnyr07rrnw49ekxs.png)
x = 100 mg
Volume of plasmid vector is :
![\text{volume of plasmid}=\frac{\text{amount of vector needed}}{\text{conc. of vector}}=(50)/(25)](https://img.qammunity.org/2021/formulas/biology/college/4lej3mpyvma8wu1l7epf9k19b5rcgtz7zg.png)
volume of plamid vector = 2 ml.