♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
From left to right for the tables :
![1) \: \: \: \: y = 4x + 2](https://img.qammunity.org/2021/formulas/mathematics/college/7h5dnwq7jkv88p41cz3iruaidmmgxsa2d7.png)
And
![2) \: \: \: \: y = 3x - 12](https://img.qammunity.org/2021/formulas/mathematics/college/x8nvq62sj9r1rplghuqzmzjtpe1e5yrm53.png)
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
To find the solution we need to take equal above equations .
![4x + 2 = 3x - 12](https://img.qammunity.org/2021/formulas/mathematics/college/d7yiuml3tdmtt0hmm1gpalcfu208k70ez3.png)
Subtract sides 3x
![- 3x + 4x + 2 = - 3x + 3x - 12 \\](https://img.qammunity.org/2021/formulas/mathematics/college/szh5xo2p41axo0zan6wx03adaxj5fz1jyb.png)
![x + 2 = - 12](https://img.qammunity.org/2021/formulas/mathematics/college/lofr23dhsx4bsv7ut7zr3bfv3k7sa7c0u2.png)
Subtract sides 2
![x + 2 - 2 = - 12 - 2](https://img.qammunity.org/2021/formulas/mathematics/college/xu5mayqlao0fbah24lowo83if2101myf88.png)
![x = - 14](https://img.qammunity.org/2021/formulas/mathematics/high-school/angfifjj1iciw495sm03z83gkt7svy77gy.png)
Thus the x-coordinate of the solution must be -14 which is just in the last option.
Thus the correct answer is the last one.
Done...
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️