Answer:
Explanation:
In the question, it is given that a right cone has a radius of 15 units and volume of 3000π units³ and we have to find the height of the cone.
![\:](https://img.qammunity.org/2023/formulas/mathematics/college/2ggh1nmemdo9eckwr4kv18nc6ebnpn2pop.png)
To Find the height of the cone, we must know this formula :
![\\{\longrightarrow{ \qquad{\underline{\boxed {\pmb{\frak { (1)/(3) \: \pi {r}^(2)h ={ Volume_((cone) )}}}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/7gdu51yxmhpludx9kui3q6gsx2elpx7p9y.png)
Where,
- r refers to the radius of the cone.
- h refers to the height of the cone.
Now, we will substitute the values in the formula :
![\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { (1)/(3) * \pi * {(15)}^(2) * h = 3000 \pi}}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/7u18s95749ljgov0u78wxguo18tfyu9ver.png)
Cancelling π from both sides we get :
![\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { (1)/(3) * \cancel\pi * {(15)}^(2) * h = 3000 \cancel\pi}}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/2ggcqr9zlq678du6q0uglzx22373oeh1un.png)
![\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { (1)/(3) * 225 * h = 3000}}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/1i6qz15cchhck08gqa34bvmaf4b4k0ztzz.png)
![\\ {\longrightarrow{ \qquad{{ {\pmb{\sf { (225)/(3) * h = 3000}}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/ufd81caormq1isicv3h9g5726thc737x6z.png)
![\\ {\longrightarrow{ \qquad{{ {\pmb{\sf 75 * h = 3000}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/h6ma7eh2r4inh4enxat5qhfumc2kwg1fn7.png)
![\\ {\longrightarrow{ \qquad{{ {\pmb{\sf h = (3000)/(75) }}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/ra1p0omg7icuti8xmhcfpn5h0lqo9ia0u4.png)
![\\{\longrightarrow{ \qquad{\underline{\boxed {\pmb{\frak { h =40 }}}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/o412y7fx8y155r8y4er5n0jgqldwy4qz4j.png)
Therefore,
- The height of the cone is 40 units .