(a)
![\bigcup\limits_(i=1)^7R_i=R_1=\boxed{[1,2]}](https://img.qammunity.org/2021/formulas/mathematics/college/th30ntg1fa417ghaj0a4l86ft8fu2r8q6l.png)
(b)
![\bigcap\limits_(i=1)^7R_i=R_7=\boxed{\left[1,\frac87\right]}](https://img.qammunity.org/2021/formulas/mathematics/college/y0w1697tt17eouucdrfi1ilz27wlrjgcug.png)
(c) No, because no two sets are disjoint. Why? Each of the
contain the endpoint 1, so at the very least,
for
.
(d)
![\bigcup\limits_(i=1)^nR_i=R_1=\boxed{[1,2]}](https://img.qammunity.org/2021/formulas/mathematics/college/1lza5n21jxoulqaejpnyzv26uzogwxzuqp.png)
(e)
![\bigcap\limits_(i=1)^nR_i=R_n=\boxed{\left[1,\frac{n+1}n\right]}](https://img.qammunity.org/2021/formulas/mathematics/college/enccjndcty8zdtf7auj8q0y1lopxk9umrk.png)
(f)
![\bigcup\limits_(i=1)^\infty R_i=R_1=\boxed{[1,2]}](https://img.qammunity.org/2021/formulas/mathematics/college/9sh36kkhu8gv0s19exhhwmjmz1v9qc3mkj.png)
because as i gets larger, the set
gets smaller. The infinite union will be equivalent to the largest set in the family of sets.
(g)

because 1 + 1/n converges to 1 as n goes to infinity, so
converges to the singleton set {1} as i goes to infinity.