Answer:
The wavelength of light (in nm) of the spectral line of Hydrogen where an electron falls from the 6th Bohr orbit to the 3rd Bohr orbit is 1090nm
Step-by-step explanation:
We know that , the wavelength of the light is calculated by Rydberg's formula-
![[n_2>n_1]](https://img.qammunity.org/2021/formulas/chemistry/college/5taevhkhqrowm1vyc3nl432a70u0pnb6nz.png)
Here , R = Rydberg's constant
![(1.097* 10^7 m^-^1)](https://img.qammunity.org/2021/formulas/chemistry/college/3x4bh0eq0y1fm21e0nbm5phznbp7xynb83.png)
Z = atomic number (for hydrogen , Z= 1)
![n_2 =6 , n_1=3](https://img.qammunity.org/2021/formulas/chemistry/college/2pb20v2yylsu4ozwoqc1l902604vkfhos9.png)
wavelength of light
Now , putting the values in the Rydberg's formula ,
![(1)/(\pi) =1.097*10^7m^-^1((1)/(3^2) -(1)/(6^2) )](https://img.qammunity.org/2021/formulas/chemistry/college/gunodumsna8biaff4w2ktxi5brwuu0ja57.png)
=
![1.097* 10^7m^-^1 ((4-1)/(36) )](https://img.qammunity.org/2021/formulas/chemistry/college/sp2me8bdb9ej37a5uad8y4aheaa5nuopr9.png)
=
![1.097* 10^7m^-^1((3)/(36) )](https://img.qammunity.org/2021/formulas/chemistry/college/lgsxtypt8yd1wepj8gbkj3zxprco73stgi.png)
=
![1.097* 10^7m^-^1((1)/(12) )](https://img.qammunity.org/2021/formulas/chemistry/college/audkzj71hpp11mr9m5qg5t8v23nqv2nezp.png)
=
![0.0914167* 10^7m^-^1](https://img.qammunity.org/2021/formulas/chemistry/college/ckfwpstcq8ap686kwqqh808ioppt5qi2az.png)
![\pi=(1)/(0.0914167*10^7m^-^1)](https://img.qammunity.org/2021/formulas/chemistry/college/4nfohh22q7ca3j01wfsi5bn598mwplwtvz.png)
![\pi=10.9389*10^-^7\\\pi=1093.89*10^-^9m](https://img.qammunity.org/2021/formulas/chemistry/college/zh1undpxenbnl4ftn3ks76b6ezxvfrueyx.png)
=1090nm
Hence , the wavelength of the light is 1090nm,, that is option D is correct.