22.3k views
5 votes
Find the points on the ellipse 2 x squared plus 3 y squared equals 1where f (x comma y )equals xyhas its extreme values.

User Manumazu
by
4.9k points

1 Answer

4 votes

Answer:

(
1/2,1/√(6)),(-1/2,
1/√(6)),(-1/2,
-1/√(6)) and

(
1/2,-1/√(6))

Explanation:

We are given that


g(x,y)=2x^2+3y^2-1=0


f(x,y)=xy

Using Lagrange's multipliers


f_x(x,y)=y


f_y(x,y)=x


g_x(x,y)=4x


g_y(x,y)=6y


f_x(x,y)=\lambda g_x(x,y)


y=4x\lambda


f_y(x,y)=\lambda g_y(x,y)


x=6\lambda y


\lambda=(y)/(4x)...(1)


\lambda=(x)/(6y)...(2)

Equation (1) divided by (2) Then we get


1=(6y^2)/(4x^2)=(3y^2)/(2x^2)


2x^2=3y^2

Substitute the values in g(x,y)


3y^2+3y^2=1


6y^2=1


y^2=1/6


y=\pm (1)/(√(6))


2x^2+2x^2=1


4x^2=1


x^2=1/4


x=\pm (1)/(2)

Therefore, the points on the ellipse are

(
1/2,1/√(6)),(-1/2,
1/√(6)),(-1/2,
-1/√(6)) and

(
1/2,-1/√(6))

User NNP
by
4.9k points