72.0k views
10 votes
In the figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If ∠DBC = 55° and ∠BAC 45°, Find ∠BCD.​

In the figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals-example-1

2 Answers

3 votes

Answer:

∠BCD = 80°

Explanation:

Given -

ABCD is a cyclic Quadrilateral.

∠DBC = 55°

∠BAC = 45°

To find -

∠BDC

Solution..

  • BC is a segment and angles of same segment are equal.

=> ∠BAC = ∠BDC

=> 45° = ∠BAC { Angles of same segment BC}

In Triangle BCD

=> ∠BDC + ∠DBS + ∠BCD = 180°

=> 45° + 55° + ∠BCD = 180°

=> 100° + ∠BDC = 180°

=> ∠BDC = 180-100

=> 80° ans.

In the figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals-example-1
User Jahoe
by
4.3k points
9 votes

Given,

ABCD is a cyclic quadrilateral in which AC and BD are its diagonals.


\: \: \: \: \: \: \: \: \: \: \: \:


\sf∠DBC= 55° and ∠BAC = 45°


\: \: \: \: \: \: \: \: \: \: \: \:


\sf∠CAD = ∠DBC= 55° (Angles \: in \: the \: same \: segment)


\: \: \: \: \: \: \: \: \: \: \: \:

Thus,


\sf∠DAB=∠CAD + ∠BAC


\: \: \: \: \: \: \: \: \: \: \: \:


\: \: \: \: \: \: \: \: \: \: \: \: \: \sf= 55° + 45°


\: \: \: \: \: \: \: \: \: \: \: \:


\: \: \: \: \: \: \: \: \: \: \: \: \sf= 100°


\: \: \: \: \: \: \: \: \: \: \: \:

We know that the opposite angles of a cyclic quadrilateral are supplimentary.


\: \: \: \: \: \: \: \: \: \: \: \:


\sf ∠DAB +∠BCD = 180°


\: \: \: \: \: \: \: \: \: \: \: \:


\sf∠BCD = 180°-100° =80°


\: \: \: \: \: \: \: \: \: \: \: \:


\pink{\boxed{\sf{∠BCD = 80°}}}

User Eric Mathison
by
4.3k points