Answer:
At the 95% confidence level the confidence interval for this proportion is:
0.5 = 1.96( √0.21 / n)
0.5 / 1.96 = √(0.21 / n)
0.3 x √n = √0.21
√n = √( 0.21 / 0.3)
= √0.7
n = 0.83
Explanation:
Solution:
Case 1:
Acceptable error = precision = 4%
Share last year = p = 23% = 0.23
q = 1 – p = 1 – 0.23
q = 0.77
Standard error/ of proportion = √pq/n
= √(0.23(0.77) )/ n
= √0.1771 / n
For a 95% confidence level = z = 1.96
At the 95% confidence level the confidence interval for this proportion is:
0.4 = 1.96( √0.1771 / n)
0.4 / 1.96 = √0.1771 / n
0.2 x √n = √0.1771
√n = √ 0.1771 / 0.2
n = 443
case 2 :
Acceptable error = precision = 5%
Switched last year = p = 30% = 0.30
q = 1 –p = 1 – 0.3 = 0.7
Standard error/ of proportion = √pq/n
= √(0.3(0.7) )/ n
= √0.21 / n
For a 95% confidence level = z = 1.96
At the 95% confidence level the confidence interval for this proportion is:
0.5 = 1.96( √0.21 / n)
0.5 / 1.96 = √(0.21 / n)
0.3 x √n = √0.21
√n = √( 0.21 / 0.3)
= √0.7
n = 0.83