Answer:
![W=22652.98ft-lb](https://img.qammunity.org/2021/formulas/mathematics/college/jz2bk8wz9r8d6l1wokfupthil4bt1tkwgb.png)
Explanation:
We are given that
Height of tank=6feet
Diameter of tank=8 feet
Radius of cone,r=d/2=8/2=4 feet
Let a layer of thickness dy at distance yr from the bottom at origin
y=6 feet
Using similar triangle property
![(r)/(y)=(4)/(6)=(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/pgkmnj44y11a9wczxcwmg5cyyco5ulsjh8.png)
![r=(2)/(3)y](https://img.qammunity.org/2021/formulas/mathematics/college/yojwtdj60wkbzo71xsl2nwgpe72ul0j7rl.png)
Weight of water=62.4 pounds per cubic foot
Now,
Weight of layer=
![62.4* \pi r^2 h=62.4((4)/(9)\pi y^2 dy](https://img.qammunity.org/2021/formulas/mathematics/college/b75ib1qskcbnzdsqpcmwjvqbferawige7v.png)
Now, work done to fill the tank from a depth of 4 feet to a depth of 6 feet is given by
![W=\int_(a)^(b)62.4* (4)/(9)\pi y^2(y) dy=\int_(4)^(6)62.4* (4)/(9)\pi y^3 dy](https://img.qammunity.org/2021/formulas/mathematics/college/11us0msvw2xn2owdpi5tb79uzn7w83snx5.png)
![W=(62.4* 4\pi)/(9)[(y^4)/(4)]^(6)_(4)](https://img.qammunity.org/2021/formulas/mathematics/college/vnskom46agutvoo2bhyvojudqgogagglgw.png)
![W=(249.6\pi)/(36)(6^4-4^4)](https://img.qammunity.org/2021/formulas/mathematics/college/c5n25czyy6o4odgvesxkpqmv608knwoq37.png)
![W=22652.98ft-lb](https://img.qammunity.org/2021/formulas/mathematics/college/jz2bk8wz9r8d6l1wokfupthil4bt1tkwgb.png)