Answer:
![[I_2]=0.105M](https://img.qammunity.org/2021/formulas/chemistry/college/kkkkln6re2jjj4vsrx0bb12ttqaz1tltas.png)
Step-by-step explanation:
Hello.
In this case, when hydrogen and iodine react at equilibrium, the reaction is:
![H_2+I_2\rightleftharpoons 2HI](https://img.qammunity.org/2021/formulas/chemistry/college/l0m4elr8lrcyugj2u6e9irx14xgcsd640g.png)
So the equilibrium expression is:
![Kc=([HI]^2)/([H_2][I_2])](https://img.qammunity.org/2021/formulas/chemistry/college/g5vlvzf6b0c08817tubidbzdef7cuk2g95.png)
Which can be also written in terms of the ICE chart knowing that Kc is 57.0:
![Kc=((2x)^2)/(([H_2]_0-x)([I_2]_0-x))](https://img.qammunity.org/2021/formulas/chemistry/college/sy1q2k5dk5kh68pjgzepjcchf5umqxpohy.png)
Whereas the initial concentrations of both hydrogen and iodine are 0.100 M (0.500mol/1.00L), thus, we write:
![Kc=((2x)^2)/((0.5-x)(0.5-x))\\\\57.0=((2x)^2)/((0.5-x)^2)](https://img.qammunity.org/2021/formulas/chemistry/college/to7pnc8hd0wbua10m87pyqsql0bw8k8xg5.png)
Which can be solved as follows:
![√(57.0) =\sqrt{((2x)^2)/((0.5-x)^2)} \\\\7.55=(2x)/(0.5-x) \\\\7.55*(0.5-x)=2x\\\\3.775-7.55x=2x\\\\x=(3.775)/(9.55)\\ \\x=0.395M](https://img.qammunity.org/2021/formulas/chemistry/college/e4tyhe8g7wq91g2r4411zres5oss0bb7z3.png)
Therefore, the concentration of iodine at equilibrium is:
![[I_2]=0.5M-0.395M=0.105M](https://img.qammunity.org/2021/formulas/chemistry/college/so8ijg7pgois4064hwaef5oy4i1ka1zttp.png)
Best regards!