Answer:
At 28.93 km/min is the distance from the plane to the radar station increasing 5 minutes later
Step-by-step explanation:
We are given A plane flying with a constant speed of 29 km/min passes over a ground radar station at an altitude of 15 km
Refer the attached figure
![\angle A =45+90=135^(\circ)\\(dy)/(dt)=29](https://img.qammunity.org/2021/formulas/mathematics/college/k771ulduy9jswvr8tpp1xji59tonnrydom.png)
x=15
![y=5 * 29=145](https://img.qammunity.org/2021/formulas/mathematics/college/z7fato0spkvyh7kmdxa0d9smf7fpfruu86.png)
We will use cosine law
![z^2=x^2+y^2-2xycos A\\z^2=15^2+y^2-2(15)ycos 135\\z^2=225+y^2-30ycos135 ----1\\z^2=225+(145)^2-30(145)cos135](https://img.qammunity.org/2021/formulas/mathematics/college/vrjknbaz8t4781vva1p37n72nmsx2mt2xi.png)
z=155.96 km
Differentiating 1 w.r.t t
![2z(dz)/(dt)=2y(dy)/(dt)-30cos 135 (dy)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/elr8fh8ayu2701t8726osfo1zleceg7ji5.png)
![2(155.96)(dz)/(dt)=2(145)(29)-30cos 135 (29)](https://img.qammunity.org/2021/formulas/mathematics/college/yz0ip47ki64zprsz5k5n8bqc771o579w0e.png)
![(dz)/(dt)=(2(145)(29)-30cos 135 (29))/(2(155.96))](https://img.qammunity.org/2021/formulas/mathematics/college/vnuyml7pg2m4t16e51e1kkpzah8a8y8fhi.png)
![(dz)/(dt)=28.93](https://img.qammunity.org/2021/formulas/mathematics/college/7iyzrax371qlwinyohril000n8bp579upc.png)
Hence At 28.93 km/min is the distance from the plane to the radar station increasing 5 minutes later