If you're talking about a discrete distribution, then
![P(X=x)=\begin{cases}\frac1{61}&\text{for }x\in\{10,11,12,\ldots,70\}\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2021/formulas/mathematics/college/tp4tvcab5plrcpa1pm24fm87gtpkfaik8v.png)
(1/61 because there are 61 numbers in the range of integers from 10 to 70) so that
![P(X<25)=\displaystyle\sum_(x=10)^(24)P(X=x)=\boxed{(15)/(61)}](https://img.qammunity.org/2021/formulas/mathematics/college/mzyfoi4brykwmk9p9nu232pl0oqeoopq46.png)
If the distribution is continuous, we would have the same density function, but x can be any real number in the interval [10, 70]. So we have
![P(X<25)=\displaystyle\int_(-\infty)^(25)P(X=x)\,\mathrm dx=\frac1{60}\int_(10)^(25)\mathrm dx=(15)/(60)=\boxed{\frac14}](https://img.qammunity.org/2021/formulas/mathematics/college/99yd96dflg3xygri5z0wg2zta2iipm2mio.png)