Explanation:
Hey there!
The points are; A(-2,3) and B(X,-5). And the distance between them is (√80) units.
We have;
![d = \sqrt{ {(x2 - x1)}^(2) + {(y2 - y1)}^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/cnahc8oowsolejeur5in1mo74h8yrbdlg3.png)
Keep all values.
![√(80) = \sqrt{ {(x + 2)}^(2) + {( - 5 - 3)}^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/k2bv6nnfuqchecmshn7oaspq08c61o0snr.png)
Squaring on both sides.
![{ (√(80)) }^(2) = ( { \sqrt{( {x + 2)}^(2) + ( { - 8)}^(2) } )}^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2zsmxrbruj6xyomag6poqtzlbyrej1nvj.png)
Simplify them.
![80 = ( {x + 2)}^(2) + 64](https://img.qammunity.org/2021/formulas/mathematics/high-school/dptmklr2bhwioykyikyqg8bw0i6etknef3.png)
![( {x + 2)}^(2) = 80 - 64](https://img.qammunity.org/2021/formulas/mathematics/high-school/6u30jbssjfi3rgpfs0ot04yif9gx7n0tos.png)
![( {x + 2)}^(2) = 16](https://img.qammunity.org/2021/formulas/mathematics/high-school/y4xejd81jzwa5qdntwxop9k0nuue2f0dt3.png)
![( {x + 2)}^(2) = {4}^(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jkpeptcc5q0dtw3sgwn4fvh26p4orbw9nl.png)
Cancel square from both sides.
![x + 2 = 4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2p30crc039q96le8vstn6zmpz2oegh8ma4.png)
X= 4-2
Therefore, X= 2.
The x-coordinate of B is 2.
Hope it helps....