Answer:
Convergent
Explanation:
aₙ = n² 5ⁿ⁻¹ / (-6)ⁿ
aₙ = (-1)ⁿ n² 5ⁿ⁻¹ / 6ⁿ
aₙ = (-1)ⁿ n² 5ⁿ / (5 (6ⁿ))
aₙ = ⅕ (-1)ⁿ n² (5/6)ⁿ
bₙ = ⅕ n² (5/6)ⁿ
bₙ = ⅕ n² / (6/5)ⁿ
lim(n→∞) bₙ
lim(n→∞) [⅕ n² / (6/5)ⁿ]
Use L'Hopitals' rule:
lim(n→∞) [⅖ n / ((6/5)ⁿ ln(6/5))]
Use L'Hopitals' rule again:
lim(n→∞) [⅖ / ((6/5)ⁿ ln(6/5)²)]
0
The limit is 0, so the series converges.