36.8k views
2 votes
How do you do this question?

How do you do this question?-example-1
User Edpaez
by
8.2k points

1 Answer

4 votes

Answer:

k > 1, or k ≥ 2

Explanation:

aₙ = (n!)² / (kn)!

aₙ₊₁ = ((n+1)!)² / (k(n+1))!

lim(n→∞)│aₙ₊₁ / aₙ│

lim(n→∞)│[((n+1)!)² / (k(n+1))!] / [(n!)² / (kn)!]│

lim(n→∞)│[((n+1)!)² / (k(n+1))!] × [(kn)! / (n!)²]│

lim(n→∞)│[((n+1)!)² / (n!)²] × [(kn)! / (k(n+1))!]│

lim(n→∞)│[((n+1)! / n!)²] × [(kn)! / (kn+k)!]│

lim(n→∞) (n+1)² × (kn)! / (kn+k)!

This converges when the limit is less than 1.

If k=1:

lim(n→∞) (n+1)² × n! / (n+1)! = lim(n→∞) (n+1) = ∞

If k=2:

lim(n→∞) (n+1)² × (2n)! / (2n+2)! = lim(n→∞) (n+1)² / [(2n+2)(2n+1)] = 1/4

If k=3:

lim(n→∞) (n+1)² × (3n)! / (3n+3)! = lim(n→∞) (n+1)² / [(3n+3)(3n+2)(3n+1)] = 0

The series converges for k > 1, or k ≥ 2.

User SanthoshPrasad
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories