Answer:
x=3
Explanation:
f(x) = x^3 -3x^2 +2
g(x) = x^2 -6x +11
Set them equal to each other
x^3 -3x^2 +2 = x^2 -6x +11
Subtract x^2 from each side
x^3 -3x^2 +2 = x^2 -6x +11
x^3 -3x^2-x^2 +2 = x^2-x^2 -6x +11
x^3 -4x^2 +2 = -6x +11
Add 6x to each side
x^3 -4x^2+6x +2 = -6x+6x +11
x^3 -4x^2+6x +2 = 11
Subtract 11
x^3 -4x^2+6x +2-11 = 11-11
x^3 -4x^2+6x -9 = 0
Factor
(x-3)(x^2-x+3)=0
Using the zero product property
x-3 =0 x^2 -x+3 =0
x=3 x^2 -x+3 =0
This will give a complex solution