Answer:
![L=(1)/(√(x+1)+√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/881mrg1ltilt7mvv4i9979prbzcd76b7c6.png)
No, It is not true because when x tends to infinity then L tends to 0.
Explanation:
We are given that
) and B
)
We have to express distance L between the points A and B as a function of x
and we have to find L tends to infinity when x tends to infinity.
Distance formula between two points is given by
![=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pxef4z2il59ufr1zpqawchx26p8w74yopu.png)
Using distance formula
![L=\sqrt{(x-x)^2+(√(x+1)-√(x))^2}](https://img.qammunity.org/2021/formulas/mathematics/college/otrcvzlifhz4lg8sc2fs9n2zebz5s6d4hp.png)
![L=\sqrt{(√(x+1)-√(x))^2}=√(x+1)-√(x)](https://img.qammunity.org/2021/formulas/mathematics/college/xfyoso88dpeq8yr60jtrv380j3vtuixmy6.png)
![L=((√(x+1)-√(x))(√(x+1)+√(x))/(√(x+1)+√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/tzkcmrni065rermw3eef9kyfy3v9v2xw60.png)
Using rationalization
Now, we get
![L=((√(x+1))^2-(√(x))^2)/(√(x+1)+√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/htxkv8cx2897us5mnnl876ilueyltj2plk.png)
Using identity
![(a+b)(a-b)=a^2-b^2](https://img.qammunity.org/2021/formulas/mathematics/college/7j3m4de2tw7vb851gbuyfmd1ihqz7rxev3.png)
![L=(x+1-x)/(√(x+1)+√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/dybm8yk0j13evoiqocb8si97ad6jsh4kse.png)
![L=(1)/(√(x+1)+√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/881mrg1ltilt7mvv4i9979prbzcd76b7c6.png)
![\lim_(x\rightarrow\infty)L=\lim_(x\rightarrow\infty)(1)/(√(x+1)+√(x))](https://img.qammunity.org/2021/formulas/mathematics/college/rq9gqc092pjrcai2kfhznw55foupb2up3j.png)
![\lim_(x\rightarrow\infty)\frac{1}{√(x)(\sqrt{1+(1)/(x)}+1)}](https://img.qammunity.org/2021/formulas/mathematics/college/s39ij3oe2na153wxw51sr5ta75rqdw59v5.png)
![=0](https://img.qammunity.org/2021/formulas/mathematics/college/knkdux1xhz2tayx2l2hwgbwgx27jgerngm.png)
Therefore,when x tends to infinity then L does not tends to infinity.