Answer:
1
Inconclusive
Explanation:
aₙ = (-1)ⁿ / (n + 6)
aₙ₊₁ = (-1)ⁿ⁺¹ / (n + 1 + 6)
lim(n→∞)│aₙ₊₁ / aₙ│
lim(n→∞)│[(-1)ⁿ⁺¹ / (n + 1 + 6)] / [(-1)ⁿ / (n + 6)]│
lim(n→∞)│[(-1)ⁿ⁺¹ / (n + 7)] × [(n + 6) / (-1)ⁿ]│
lim(n→∞)│[(-1)ⁿ⁺¹ / (-1)ⁿ] × [(n + 6) / (n + 7)]│
lim(n→∞)│-1 × [(n + 6) / (n + 7)]│
lim(n→∞) [(n + 6) / (n + 7)]
1
The limit equals 1, so the ratio test is inconclusive.